Logo
  • Home
  • About
  • What we do
  • Partners
  • News
  • Resources
  • Careers
  • Contact
AlphaFold

Breakthrough technology tackles one of science’s most complex problems

17 Aug 2022

Christian Rausch - Director of science and innovation
Christian Rausch - Director of science and innovation

 

Part 1 of 3…

Often referred to as the molecular machinery performing the biological functions of life, the functionality of proteins largely depends on their three-dimensional shape. Because of this, accurate structure determinations are fundamental in understanding a protein’s biological functioning, its involvement in disease and its potential as a target for novel therapeutics.

However, for nearly 50 years, predicting the three-dimensional structure of proteins based on their amino acid sequence has been one of the most challenging problems in science. Typically involving complex lab analyses such as X-ray crystallography or (more recently) cryo-electron microscopy (cryo-EM), determining a single protein structure was immensely time-consuming, costly and difficult. Generations of scientists have tried to come up with computational solutions to solve the so-called “protein folding problem” for decades. They never quite succeeded, until recently – when Google’s sister company DeepMind presented AlphaFold (1).

A first, very promising version of AlphaFold was presented by the DeepMind team at the 13 biannual Critical Assessment of protein Structure Prediction (CASP13), a competition in which scientists come up with computational methods to predict (known) protein structures from their amino acid sequence.

blog1_image2-01

The main breakthrough of the tool came in December of 2020, when a second and improved version of AlphaFold (AlphaFold2) was presented at CASP14. Using artificial intelligence (AI) methods, the AlphaFold2 tool was capable of producing structure predictions of a broad range of proteins with unprecedented accuracy levels. In October 2021, an addition to the tool was made that is capable of predicting the interactions within proteins composed of different subunits (so-called multimeric proteins).

AlphaFold2 was trained on all known experimental structures stored in sequence and structure databases. The tool uses different deep learning techniques to accurately predict a protein’s structure based solely on its amino acid sequence. The ability to do this quickly and accurately, even for highly complex protein structures, is a massive leap forward in life sciences and medicine. The AlphaFold technology has, to some extent, solved the “protein solving problem” and is now pushing scientific discovery at an unprecedented pace. The DeepMind team has already predicted the structures of all available proteins from different complete genome sequences, including all known proteins in the human body (2). In 2021, Science has named AI-powered protein structure prediction as its Breakthrough of the Year (3). Moreover, the source code as well as all data for running AlphaFold2 was made freely available by the developers, allowing researchers worldwide to harness the power of AI for protein structure prediction (4). It goes without saying that the development of AlphaFold represents the dawn of an exciting new era in the life sciences.

The combination of complex computational methods to push scientific discovery has been at the centre of BioLizard’s activities from the very get-go. Our Lizards have studied AlphaFold in detail and applied the technology in a number of projects. We couldn’t be more excited about the impact this technology will have on life sciences in general and structural biology and drug development in particular.

Read the next blog in the series  >

 

Looking for an experienced partner in AlphaFold?

Contact us!

Trust the data professionals

blog1_CTA-01

 

 

  1. Tunyasuvunakool, K., Adler, J., Wu, Z. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021). https://doi.org/10.1038/s41586-021-03828-1
  2. https://alphafold.ebi.ac.uk/
  3. https://www.science.org/content/article/breakthrough-2021
  4. https://github.com/deepmind/alphafold

Let's do something
great together

Contact us

Join the social
media discussion

Stay informed with
our latest news

Read our news
  • Home
  • About

©2022 BioLizard nv. All Rights Reserved. Design by Just Jax. Development by TYL.

  • Privacy Policy
Logo
Biolizard Cookie Consent Information

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.

Cookie SettingsAccept All

Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-advertisement1 yearSet by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Advertisement" category .
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
CookieDurationDescription
bcookie2 yearsLinkedIn sets this cookie from LinkedIn share buttons and ad tags to recognize browser ID.
langsessionThis cookie is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
lidc1 dayLinkedIn sets the lidc cookie to facilitate data center selection.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
CookieDurationDescription
_ga2 yearsThe _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognize unique visitors.
_gat_gtag_UA_164325847_11 minuteThis cookie is set by Google and is used to distinguish users.
_gat_UA-164325847-11 minuteThis is a pattern type cookie set by Google Analytics, where the pattern element on the name contains the unique identity number of the account or website it relates to. It appears to be a variation of the _gat cookie which is used to limit the amount of data recorded by Google on high traffic volume websites.
_gcl_au3 monthsProvided by Google Tag Manager to experiment advertisement efficiency of websites using their services.
_gid1 dayInstalled by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
CookieDurationDescription
_fbp3 monthsThis cookie is set by Facebook to display advertisements when either on Facebook or on a digital platform powered by Facebook advertising, after visiting the website.
bscookie2 yearsThis cookie is a browser ID cookie set by Linked share Buttons and ad tags.
fr3 monthsFacebook sets this cookie to show relevant advertisements to users by tracking user behaviour across the web, on sites that have Facebook pixel or Facebook social plugin.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
CookieDurationDescription
a3aa548f857642d7ad9818410843280acd93d104c52e466aa7c59da011282bb01 yearNo description
AnalyticsSyncHistory1 monthNo description
li_gc2 yearsNo description
UserMatchHistory1 monthLinkedin - Used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
SAVE & ACCEPT
Powered by CookieYes Logo